
Structured Vs. Object Oriented Analysis and Design

SAD Vs. OOAD

1

Software process model

2

Requirements
Specification

Design and
Implementation

Validation Evolution

Modeling

A model is an abstract view of a system

We create a model to gain better understanding

of an entity, for example a model of a plane is a

small plane.

When the entity is software, the model takes a

different form.

3

A software Model

A software model must be capable of

representing :

 the information that the software transforms,

 the functions that enable the transformation to occur,

and

 the behavior of the system as the transformation

takes place.

Two types of software modeling (requirements):

 Structured model

 Object oriented model

4

Structured Analysis Vs. Object Oriented

Modeling

 Structured Analysis and Object Oriented Analysis are different techniques

of developing a computer system.

 Structured analysis: the focus is only on process and procedures.

Modeling techniques used in it are DFD(Data Flow Diagram), Flowcharts

etc.

 Object oriented analysis: the focus is more on capturing the real world

objects in the current scenario that are of importance to the system. It

stresses more on data structure and less on procedural structure.

Modeling techniques used in it are UML(Unified modeling Language),

that can present both structural and behavioral/procedural aspect of the

system. UML includes Class Diagram, State Diagram, Use case diagram,

Sequence Diagram, etc.

Chapter 5 System modeling 5

Structures Analysis and Design

SAD

6

Structured analysis and design

 Analysis

 Determine system requirements

 Structuring system process requirements

 Logical requirements (logical modeling)

 Structuring system data requirements

 Design

 Database design (DB normalization)

 Forms and report design (GUI design)

Chapter 5 System modeling 7

Analysis: Structured analysis and design

 Determine system requirements:

 Interviewing individuals and/or group

 Structuring system process requirements

 Data flow diagrams (DFD) - process modeling

 Context diagram

 Process decomposition (DFD levels): 4 types of DFD:

• Current physical: adequate detail only

• Current logical: enables analysts to understand current system

• New logical: technology independent, show data flows, structure,

and functional requirements of new system.

• New physical: technology dependent.

 Logical modeling: using structured English, decision table/tree

 Structuring system data requirements: using ER diagram
Chapter 5 System modeling 8

DFD symbols

Chapter 5 System modeling 9

Context diagram

Chapter 5 System modeling 10

Level-0 diagram

Chapter 5 System modeling 11

Design: Structured analysis and design

 Database design (DB normalization):

 Converting complex data structures into simple, stable data

structures.

 The result of normalization is that every non-primary key attribute

depends upon the whole primary key.

 Forms and report design (GUI design)

Chapter 5 System modeling 12

Object Oriented Analysis and Design

OOAD

13

Object-Oriented Analysis and Design (OOAD)

 Based on objects rather than data or processes.

Object: is a structure encapsulating attributes and

behaviors of real-world entity.

 Object class: is a logical grouping of objects sharing the

same attributes and behaviors.

 Inheritance: is hierarchical arrangement of classes

enable subclasses to inherit properties of superclasses.

Chapter 5 System modeling 14

Object-Oriented Analysis and Design (OOAD)

phases:

 Analysis :

 Structuring requirements (Use cases)

 Conceptual data modeling (class diagram)

 Object relationship modeling: Class diagram (ER diagram)

 Analysis classes: Sequence diagram – activity diagram – state

diagram

 Design :

 Physical DB design

 Design elements: classes – components – system architecture

 GUI design

Chapter 5 System modeling 15

Commonly used UML diagram types

1. Activity diagrams, which show the activities involved in

a process or in data processing .

2. Use case diagrams, which show the interactions

between a system and its environment.

3. Sequence diagrams, which show interactions between

actors and the system and between system

components.

4. Class diagrams, which show the object classes in the

system and the associations between these classes.

5. State diagrams, which show how the system reacts to

internal and external events.

16

Interaction models : Use case

 A use case in the MHC-PMS

17

Structural models : Class diagrams

 An association is a link between classes that indicates

that there is some relationship between these classes.

When you are developing models during the early stages

of the software engineering process, think of objects

represent something in the real world, such as a patient,

a prescription, doctor, etc.

18

Ex: Classes and associations in the MHC-PMS

19

Ex: The Consultation class

20

Behavioral models

A- Data-driven modeling – Activity diagram

 Behavioral models are models of the dynamic behavior of a system

as it is executing. They show what happens or what is supposed to

happen when a system responds to a stimulus from its environment.

 Many business systems are data-processing systems that are

primarily driven by data. They are controlled by the data input to the

system, with relatively little external event processing.

 Data-driven models show the sequence of actions involved in

processing input data and generating an associated output.

 They are particularly useful during the analysis of requirements as

they can be used to show end-to-end processing in a system.

21

Data-driven modeling

 Data flow diagrams (DFDs) may be used to model the

system’s data processing.

 These show the processing steps as data flows through

a system.

 UML does not support DFDs . UML use activity diagram

instead.

22

Ex: An activity model of the insulin pump’s

operation

23

Behavioral models

B- Event-driven modeling - State diagram

 Event-driven modeling shows how a system responds to

external and internal events.

24

Ex: State diagram of a microwave oven

25

26

References

 http://www.slideshare.net/mksaad/structure-vs-object-

oriented-analysis-and-design

 Sommerville, Ian ,“Software Engineering”, 9th edition,

PEARSON

27

http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design
http://www.slideshare.net/mksaad/structure-vs-object-oriented-analysis-and-design

